
HyDe Documentation
Release 0.4.1a

Paul Blischak and Laura Kubatko

Jul 12, 2019

Contents

1 Getting help 3

2 Features 5

3 Documentation 7

4 Indices and tables 19

Index 21

i

ii

HyDe Documentation, Release 0.4.1a

HyDe is a software package that detects hybridization in phylogenomic data sets using phylogenetic invariants. The
primary interface for HyDe is a Python module called phyde (Pythonic Hybridization Detection). phyde provides
a suite of tools for performing hypothesis tests on triples of taxa to detect hybridization. To ensure that the necessary
dependencies for phyde are available, we suggest using a Python distribution such as Miniconda.

To facilitate analyses using the Python module, three scripts are provided to conduct hybridization detection analyses
directly from the command line:

• run_hyde.py: runs a standard hybridization detection analysis on all triples in all directions. Results are also
filtered based on whether there is significant evidence for hybridization.

• individual_hyde.py: tests each individual within a putative hybrid population using a list of specified
triples specified.

• bootstrap_hyde.py: conducts bootstrap resampling of the individuals within the putative hybrid lineages
for each specified triple.

These last two scripts need to be given a three column table of triples (P1, Hybrid, P2) that you wish to test:

sp1 sp2 sp3
sp1 sp3 sp4
sp3 sp4 sp5
.
.
.

You can also use a results file from a previous analysis as a triples file. For example, you can use the filtered results
from the run_hyde.py script so that you only run analyses on triples that have significant levels of hybridization.
If you only have a few hypotheses that you want to test, then you can also pass a triples file to run_hyde.py and it
will only test those hypotheses rather than testing everything.

Multithreaded versions of these scripts are also available (run_hyde_mp.py, individual_hyde_mp.py, and
bootstrap_hyde_mp.py). Make sure you have the multiprocess module installed before you use them:
pip install multiprocess.

Contents 1

https://travis-ci.org/pblischak/HyDe
http://hybridization-detection.readthedocs.io/en/latest/?badge=latest
https://pypi.python.org/pypi/phyde
https://conda.io/miniconda.html

HyDe Documentation, Release 0.4.1a

2 Contents

CHAPTER 1

Getting help

If you have questions about running HyDe, please feel free to use the gitter chatroom to get help:

If you have a problem while running HyDe and you think it may be a bug, please consider filing an issue on GitHub:

3

https://github.com/pblischak/HyDe/issues

HyDe Documentation, Release 0.4.1a

4 Chapter 1. Getting help

CHAPTER 2

Features

• Conduct hypothesis tests using multiple individuals per population.

• Test each individual within a putative hybrid lineage to assess if hybridization is uniform.

• Test all possible triples of taxa and process results from within Python.

• Bootstrap individuals within taxa to assess patterns of hybrid speciation vs. introgression.

• Visualize the distributions of various quantities (Test Statistic, Hybridization Parameter, D-Statistic) using boot-
strap replicates.

• Calculate the D-Statistic (ABBA-BABA) using site pattern counts returned during a hypothesis test.

5

HyDe Documentation, Release 0.4.1a

6 Chapter 2. Features

CHAPTER 3

Documentation

3.1 Installation

HyDe requires Python v2.7 or v3.6, a C++ compiler, and several Python modules (listed below).

3.1.1 Miniconda

We recommend using a Python distribution such as Miniconda to make it easier to manage modules and environments.

Get Miniconda for your operating system (Mac or Linux)
Answer yes to the questions the Installer asks
These commands will download Python 2.7 for Mac OSX
curl -O https://repo.continuum.io/miniconda/Miniconda2-latest-MacOSX-x86_64.sh
bash Miniconda2-latest-MacOSX-x86_64.sh

3.1.2 Required Python packages

With Miniconda installed, we can use pip (or conda) to install all of the Python modules that HyDe requires (Cython,
Numpy, Matplotlib, Seaborn, and Multiprocess).

Install packages with pip
pip install cython numpy matplotlib seaborn multiprocess

3.1.3 Installing HyDe

There are two ways that HyDe can be installed once you have all of the required Python modules: (1) install from
PyPI using pip or (2) clone from GitHub and install manually.

To install from PyPI, all we need to do is type the following command:

7

HyDe Documentation, Release 0.4.1a

#installing from PyPI
pip install phyde

Next, we’ll take a look at how to install HyDe by cloning it from GitHub. The commands below take you through
every step to accomplish this:

Clone the HyDe repo from GitHub and cd into the repo
git clone https://github.com/pblischak/HyDe.git
cd HyDe/

Builds and installs phyde module
python setup.py install

Test installation
make test

Step-by-step

After cloning HyDe from GitHub and moving into the main HyDe directory, the next two steps accomplish the fol-
lowing tasks:

1. python setup.py install: this will build and install the HyDe Python module, including the compila-
tion of any Cython files (C++ compiler required).

2. make test: this will test the installation by running a series of commands designed to check that the installa-
tion was completed successfully. The main tests are in the test.py script in the test/ folder.

3.2 HyDe Data Files

The main data files for running HyDe are (1) the DNA sequences and (2) the map of sampled individuals to their
respective taxa/populations. Examples of these files can be found in the test/ and examples/ directories within
the main HyDe folder. Below we describe each file in more detail. If you installed HyDe from PyPI and do not have a
clone of the GitHub repository, these files can be viewed here.

3.2.1 Sequence Data

The DNA sequence data should be in sequential Phylip format with individual names and sequence data all on one
line and separated by a tab. In previous versions of HyDe (<= 0.3.1), the header information that is typically present in
a Phylip file (# individuals and # sites) was not included. We maintain this backwards compatibility. Individual names
do not have length restrictions (within reason) and do not all need to be the same number of characters.

Example: data.txt

<NumInd> <NumSites>
Ind1 AGATTGAGCTAGCAGACGTGACAGACAGATGACAGTGACGA...
Ind2 AGATTGAGCTAGCAGACGTGACAGACAGATGACAGTGACGA...
Ind3 AGATTGAGCTAGCAGACGTGACAGACAGATGACAGTGACGA...
.
.
.
Ind23 AGATTGAGCTAGCAGACGTGACAGACAGATGACAGTGACGA...
Ind24 AGATTGAGCTAGCAGACGTGACAGACAGATGACAGTGACGA...

(continues on next page)

8 Chapter 3. Documentation

https://github.com/pblischak/HyDe

HyDe Documentation, Release 0.4.1a

(continued from previous page)

Ind25 AGATTGAGCTAGCAGACGTGACAGACAGATGACAGTGACGA...
.
.
.
Ind(N-2) AGATTGAGCTAGCAGACGTGACAGACAGATGACAGTGACGA...
Ind(N-1) AGATTGAGCTAGCAGACGTGACAGACAGATGACAGTGACGA...
IndN AGATTGAGCTAGCAGACGTGACAGACAGATGACAGTGACGA...

3.2.2 Taxon Map

The taxon map file is organized similarly to the sequence data file with one individual per row and a tab separating the
individual’s name from the name of the taxon/population it belongs to. The individuals should be in the same order as
the DNA sequence data file with all individuals in a particular taxon grouped together sequentially.

Example: map.txt

Ind1 Pop1
Ind2 Pop1
Ind3 Pop1
.
.
.
Ind23 Pop3
Ind24 Pop3
Ind25 Pop3
.
.
.
Ind(N-2) PopM
Ind(N-1) PopM
IndN PopM

3.2.3 Triples file

Each of the Python scripts that are part of HyDe take a file of triples that are to be tested for hybridization. The format
of this triples file is a three column table where each row is a triple to be tested. Column one of the table is parent one,
column two is the putative hybrid, and column three is parent two. You can name the populations anything you like as
long as the name doesn’t have spaces.

Pop1 Pop2 Pop3
Pop1 Pop3 Pop4
Pop2 Pop4 Pop5
.
.
.
Pop4 Pop5 PopM

We have also written the scripts to take previous output files from HyDe as input. It does this by ignoring the first-row
header and using the triples specified in the rows that follow.

3.2. HyDe Data Files 9

HyDe Documentation, Release 0.4.1a

3.3 Analyzing Data with HyDe

Below we provide details on the three main scripts that are used to analyze data with HyDe. The multithreaded
versions of these scripts behave in the exact same way, but have an added --threads (-j) option to specify how
many threads to use.

We will be using the data.txt and map.txt files in the test/ folder from the GitHub repo for HyDe. If you
don’t have a clone of the repo, you can download the files using the following commands:

curl -O https://raw.githubusercontent.com/pblischak/HyDe/master/test/data.txt
curl -O https://raw.githubusercontent.com/pblischak/HyDe/master/test/map.txt

Note: Recommended workflow:

When analyzing data with HyDe, we recomend the following workflow.

1. Use the run_hyde.py script to analyze all possible triples. This will produce two output files, one with all
results and one with only significant results (see Note below on filtered results).

2. Next, if you want to see if certain individuals are hybrids, run the individual_hyde.py script and use the
filtered results file output from the previous step as the triples file.

3. For the bootstrap_hyde.py script, we recommend using it when you don’t have enough data (and therefore
not enough power) to detect hybridization within a single individual. This will depend on how much hybridiza-
tion has occurred, but it is typically difficult to detect hybridization with HyDe using less than 10,000 sites.
Otherwise, we always recommend using the individual_hyde.py script.

3.3.1 Command Line Scripts

run_hyde.py

To run HyDe from the command line, we have provided a Python script (run_hyde.py) that will test all triples in
all directions (“full” analysis). It can also be used to test a predefined set of hypothesis tests using a triples file. The
arguments for the script are passed using command line flags, all of which can be viewed by typing run_hyde.py
-h. Typing the name of the script with no arguments will print out a docstring with additional details.

Run a full hybridization detection analysis
run_hyde.py -i data.txt -m map.txt -o out -n 16 -t 4 -s 50000

The results will be written to file with a prefix that can be supplied using the --prefix flag (<prefix>-out.txt;
the default is ‘hyde’).

Note: Filtered results:

We also write a file (<prefix>-out-filtered.txt) that filters the results from the hybridization detection
analysis to only include significant results with sensible values of 𝛾 (0 < 𝛾 < 1). Some values of 𝛾 in the original
results file may be nonsensical because they will be either negative or greater than 1. However, 𝛾 does not have any
theoretical limits with regard to the hypothesis test in HyDe: it can range from −∞ to ∞. The reason that these values
occur and may give a significant p-value is because they are testing a hypothesis that involves a hybrid but in the wrong
direction (i.e., a hybrid is tested as one of the parental species). Testing all possible directions that hybridization can
occur for three taxa is typically what causes these types of results to happen.

10 Chapter 3. Documentation

HyDe Documentation, Release 0.4.1a

individual_hyde.py

Triples file required.

If you want to test for hybridization at the individual level within the populations that have significant levels of hy-
bridization, you can use the filtered results file from an analysis with run_hyde.py as the input triples file for the
individual_hyde.py script. The options for individual_hyde.py are the same as for run_hyde.py,
and typing the name of the script without arguments will again print out a docstring with more details.

Test all individuals for the hybrid populations specified
in the file hyde-filtered-out.txt
individual_hyde.py -i data.txt -m map.txt -tr hyde-out-filtered.txt -o out

-n 16 -t 4 -s 50000

The results of the individual level tests will be written to a file called <prefix>-ind.txt, where <prefix> can
be set using the --prefix flag (default=’hyde’).

bootstrap_hyde.py

Triples file required.

The bootstrap_hyde.py conducts bootstrap resampling of individuals within hybrid populations. The arguments
are the same as the individual_hyde.py script with the addition of specifying the number of bootstrap replicates
(--reps=<#reps>; default=100).

Bootstrap resample individuals within hybrid populations
specified in hyde-out-filtered.txt
bootstrap_hyde.py -i data.txt -m map.txt -tr hyde-out-filtered.txt -o out

-n 16 -t 4 -s 50000 --reps 200

The output file is named hyde-boot.txt, but again this can be changed using the --prefix argument. Bootstrap
replicates for each triple are separated by a line with four pound symbols and a newline (“####\n”; match this pattern
to split results).

3.3.2 Python Interface

Reading in Data

Reading data files (DNA sequences and taxon maps) into Python is done using the HydeData class. Making a new
variable using the class requires passing six arguments to the constructor (in order): (1) the name of the data file, (2)
the name of the map file, (3) the name of the outgroup taxon, (4) the number of individuals, (5) the number of taxa,
and (6) the number of sites. Names should be provided in quotes. The code below will read in the data.txt and
map.txt files for us to analyze.

Import the phyde module. For simplicity, we always import it as `hd`
import phyde as hd

Read in the data using the HydeData class
dat = hd.HydeData("data.txt", "map.txt", "out", 16, 4, 50000)

Conducting Individual Hypothesis Tests

With our data read in and stored using the variable dat, we can begin to run hypothesis tests using the methods
provided in the HydeData class. The first of these is the test_triple()method, which will conduct a hypothesis

3.3. Analyzing Data with HyDe 11

HyDe Documentation, Release 0.4.1a

test at the population level for a specified triple of taxa (remember, the outgroup has already been specified when we
read in the data).

Using the `dat` variable from the previous code section,
we'll run a hypothesis test on the triple (sp1, sp2, sp3).

res = dat.test_triple("sp1", "sp2", "sp3")

res is a variable that stores the results of our hypothesis test. More specifically, it is a Python dictionary. To see
what it contains we can type print res (or print(res) if you have imported the print_function from the
__future__ module).

Using the same HydeData variable, we can test all of the individuals in the taxon “sp2” to see if they are all hybrids.
We do this using the test_individuals() method.

The code here should look very similar to the previous code block
The only difference is that we are calling a different method

res_ind = dat.test_individuals("sp1", "sp2", "sp3")

res_ind stores the results of the hypothesis tests for each individual in population “sp2” (individuals “i5” through
“i10”). Since the results for each test is a dictionary, the res_ind variable is a dictionary of dictionaries with the
individual names as the keys and the results of the hypothesis test as the associated value. The code below shows a
few examples of how to we can work with these dictionary results in Python.

Look at results for individual i5 in res_ind
res_ind["i5"]

To look at a specific value, say "Gamma", we need two keys: one for each nested
→˓level of the dictionaries
res_ind["i5"]["Gamma"]

To get all of the values of the test statistics ("Zscore"), we can use a dictionary
→˓comprehension
zscores = {k:v["Zscore"] for k,v in res_ind.items()}
print zscores

The final method of note implemented by the HydeData class is the bootstrap_triple() function, which will
randomly resample individuals in the hybrid population and run hypothesis tests for each replicate. The number of
bootstrap replicates to run is specified using the reps=# argument.

res_boot = dat.bootstrap_triple("sp1", "sp2", "sp3", reps=100)

res_boot stores the results of this analysis as set of nested dictionaries. The easiest way to see its structure is to
print it using print(res_boot).

More detailed documentation on the HydeData class and other classes implemented in the phyde module can be
found in the API Reference.

3.4 Visualization

This page is still in the works. Sorry!

12 Chapter 3. Documentation

HyDe Documentation, Release 0.4.1a

3.4.1 Basic plotting

import phyde as hd

Read in bootstrap replicates for plotting
boot = hd.Bootstrap("hyde-boot.txt")

Make a density plot of the bootstrap reps for Gamma
hd.viz.density(boot, 'Gamma', 'sp1', 'sp2', 'sp3', title="Bootstrap Dist. of Gamma")

3.4.2 Advanced plotting

For plotting that goes beyond the basic methods implemented in phyde, direct interaction with the Seaborn package
is required.

3.5 API Reference

3.5.1 Submodule: core

The core submodule provides the main Python interface for hybridization detection analyses and data exploration
through the use of implemented classes.

File: data.pyx

The data.pyx source file is written in Cython, a superset of the Python language that allows the use of C/C++ code
to speed up computationally intensive tasks (and many other things). This file is automatically translated into a C++
source file and is compiled into a shared library that can be called from Python.

class phyde.HydeData(infile=None, mapfile=None, str outgroup=None, int nind=-1, int ntaxa=-1, int
nsites=-1, bool quiet=False, bool ignore_amb_sites=False)

Class for storing (1) a matrix of DNA bases as unsigned, 8-bit integers and (2) mapping of individuals to taxa.

Parameters

• infile (str) – the name of the input DNA sequence data file.

• mapfile (str) – the name of the individual mapping file.

• outgroup (str) – the name of the outgroup.

• nind (int) – the number of individuals.

• ntaxa (int) – the number of populations/taxa.

• nsites (int) – the number of sites.

• quiet (bool) – suppress printing output.

• ignore_amb_sites (bool) – ignore missing/ambiguous sites.

Example:

import phyde as hd
data = hd.HydeData("infile.txt", "mapfile.txt", "outgroup", 100, 6, 10000)

3.5. API Reference 13

https://seaborn.pydata.org/

HyDe Documentation, Release 0.4.1a

bootstrap_triple(self, str p1, str hyb, str p2, int reps=100)→ dict
Performs bootstrap resampling of individuals within the specified hybrid population.

Parameters

• p1 (str) – parent one.

• hyb (str) – the putative hybrid.

• p2 (str) – parent two.

• reps (int) – number of boostrap replicates (default=100).

Return type dict

Example:

import phyde as hd
data = hd.HydeData("data.txt", "map.txt", "out", 16, 4, 50000)
res = data.bootstrap_triple("sp1", "sp2", "sp3")

list_triples(self)→ list
List all possible triples based on the populations in the given map file.

Return type list

Returns a list of 3-tuples: (p1, hyb, p2)

resetOutgroup(self, newOut)
Reset outgroup population.

Parameters newOut (str) – Name of the new outgroup.

test_individuals(self, str p1, str hyb, str p2)→ dict
Test all individuals in a given putative hybrid lineage (hyb).

Parameters

• p1 (str) – parent one.

• hyb (str) – the putative hybrid.

• p2 (str) – parent two.

Return type dict

Example:

import phyde as hd
data = hd.HydeData("data.txt", "map.txt", "out", 16, 4, 50000)
res = data.test_individuals("sp1", "sp2", "sp3")

test_triple(self, str p1, str hyb, str p2)→ dict
Main method for testing a hypothesis on a specified triple. ((P1,Hyb),P2):𝛾 and (P1,(Hyb,P2)):1− 𝛾. It is
a wrapper for the C++ based methods _test_triple_c(), which is not accessible from Python.

Parameters

• p1 (str) – parent one.

• hyb (str) – the putative hybrid.

• p2 (str) – parent two.

Return type dict

14 Chapter 3. Documentation

HyDe Documentation, Release 0.4.1a

Returns a dictionary with the values for the Z-score, P-value, estimate of gamma, and all of the site pattern
counts.

Example:

import phyde as hd
data = hd.HydeData("data.txt", "map.txt", "out", 16, 4, 50000)
res = data.test_triple("sp1", "sp2", "sp3")

File: result.py

class phyde.HydeResult(infile)
A class for reading in and working with results from a HyDe analysis. It is mostly a simple container for storing
triples as tuples and using them as keys in a dictionary with values that are also dictionaries containing the
results from the HyDe analysis.

Parameters infile (str) – name of results file.

Example:

import phyde as hd
res = hd.HydeResult("hyde-out.txt")

__call__(attr, p1, hyb, p2)
A callable method (the object can be called as a function) for accessing information in a phyde.
HydeResult object.

Parameters

• attr (str) – name of hypothesis test attribute to plot (e.g., “Gamma”, “Zscore”,
“Pvalue”, etc.)

• p1 (str) – parent one.

• hyb (str) – putative hybrid.

• p2 (str) – parent two.

Example:

import phyde as hd
res = hd.HydeResult("hyde-out.txt")
res("Zscore", "sp1", "sp2", "sp3")

abba_baba(p1, hyb, p2)
Calculate Patterson’s D-Statistic for the triple (p1, hyb, p2).

Parameters

• p1 (str) – parent 1.

• hyb (str) – putative hybrid.

• p2 (str) – parent 2.

Example:

import phyde as hd
res = hd.HydeResult("hyde-out.txt")
res.abba_baba("sp1", "sp2", "sp3")

3.5. API Reference 15

HyDe Documentation, Release 0.4.1a

File: bootstrap.py

class phyde.Bootstrap(bootfile)
A class representing a dictionary of species triplets with info for each bootstrap replicate stored as a dictionary
containing parameter values.

Parameters bootfile (str) – name of file with bootstrapping results.

Example:

import phyde as hd
boot = hd.Bootstrap("hyde-boot.txt")

__call__(attr, p1, hyb, p2)
A callable method (the object can be called as a function) to access attributes from a bootstrapped HyDe
analysis. Returned as a list.

Parameters

• attr (str) – name of hypothesis test attribute to plot (e.g., “Gamma”, “Zscore”,
“Pvalue”, etc.)

• p1 (str) – parent one.

• hyb (str) – putative hybrid.

• p2 (str) – parent two.

Return type list

Returns a list of the given attribute across all bootstrap replicates for the given triple (p1, hyb, p2).

Example:

import phyde as hd
boot = hd.Bootstrap("hyde-boot.txt")
boot("Gamma", "sp1", "sp2", "sp3")

abba_baba(p1, hyb, p2)
Calculate Patterson’s D-Statistic for all bootstrap replicates for the triple (p1, hyb, p2). Uses vectorization
with numpy arrays.

Parameters

• p1 (str) – parent 1.

• hyb (str) – putative hybrid.

• p2 (str) –

Return type numpy.array

Example:

import phyde as hd
boot = hd.Bootstrap("hyde-boot.txt")
boot.abba_baba("sp1", "sp2", "sp3")

write_summary(summary_file)
Write a summary of the bootstrap replicates for each tested triple. The summary written to file includes
the mean and standard deviation of the Zscore, P-value, and estimate of 𝛾.

Parameters summary_file (str) – name of file.

16 Chapter 3. Documentation

HyDe Documentation, Release 0.4.1a

3.5.2 Submodule: visualize

The visualize submodule uses the matplotlib and seaborn packages to provide basic plotting of results
stored by the phyde.Bootstrap class.

File: viz.py

phyde.visualize.viz.density(boot_obj, attr, p1, hyb, p2, title=”, xlab=”, ylab=”, shade=True,
color=’b’)

Make a Seaborn density plot. You can turn shading off by setting shade=False.

Parameters

• boot_obj (phyde.Bootstrap) – An object of class phyde.Bootstrap.

• attr (str) – name of hypothesis test attribute to plot (e.g., “Gamma”, “Zscore”, “Pvalue”,
etc.)

• p1 (str) – parent one.

• hyb (str) – putative hybrid.

• p2 (str) – parent two.

• title (str) – plot title.

• xlab (str) – x-axis label.

• ylab (str) – y-axis label.

• shade (bool) – draw histogram.

• color (str) – plot color.

Example:

import phyde as hd
boot = hd.Bootstrap("hydeboot.txt")
hd.viz.density(boot, "Gamma", "sp1", "sp2", "sp3", title="Bootstrap distribution
→˓of γ",

xlab="γ", ylab="density")

phyde.visualize.viz.dist(boot_obj, attr, p1, hyb, p2, title=”, xlab=”, ylab=”, hist=True,
color=’b’)

Make a Seaborn distplot plot (density plot with histogram). Can turn histogram off by setting hist=False.

Parameters

• boot_obj (phyde.Bootstrap) – An object of class phyde.Bootstrap.

• attr (str) – name of hypothesis test attribute to plot (e.g., “Gamma”, “Zscore”, “Pvalue”,
etc.)

• p1 (str) – parent one.

• hyb (str) – putative hybrid.

• p2 (str) – parent two.

• title (str) – plot title.

• xlab (str) – x-axis label.

• ylab (str) – y-axis label.

3.5. API Reference 17

HyDe Documentation, Release 0.4.1a

• hist (bool) – draw histogram.

• color (str) – plot color.

Example:

import phyde as hd
boot = hd.Bootstrap("hydeboot.txt")
hd.viz.dist(boot, "Zscore", "sp1", "sp2", "sp3", title="Bootstrap distribution of
→˓Z-score",

xlab="Z-score", ylab="density")

phyde.visualize.viz.violinplot(boot_obj, attr, p1, hyb, p2, title=”, xlab=”, ylab=”, color=’b’)
Make a Seaborn violinplot.

Parameters

• boot_obj (phyde.Bootstrap) – An object of class phyde.Bootstrap.

• attr (str) – name of hypothesis test attribute to plot (e.g., “Gamma”, “Zscore”, “Pvalue”,
etc.)

• p1 (str) – parent one.

• hyb (str) – putative hybrid.

• p2 (str) – parent two.

• title (str) – plot title.

• xlab (str) – x-axis label.

• ylab (str) – y-axis label.

• color (str) – plot color.

Example:

import phyde as hd
boot = hd.Bootstrap("hydeboot.txt")
hd.viz.violinplot(boot, "Pvalue", "sp1", "sp2", "sp3", title="Bootstrap
→˓distribution of P-value",

xlab="P-value", ylab="density")

18 Chapter 3. Documentation

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

19

HyDe Documentation, Release 0.4.1a

20 Chapter 4. Indices and tables

Index

Symbols
__call__() (phyde.Bootstrap method), 16
__call__() (phyde.HydeResult method), 15

A
abba_baba() (phyde.Bootstrap method), 16
abba_baba() (phyde.HydeResult method), 15

B
Bootstrap (class in phyde), 16
bootstrap_triple() (phyde.HydeData method),

13

D
density() (in module phyde.visualize.viz), 17
dist() (in module phyde.visualize.viz), 17

H
HydeData (class in phyde), 13
HydeResult (class in phyde), 15

L
list_triples() (phyde.HydeData method), 14

R
resetOutgroup() (phyde.HydeData method), 14

T
test_individuals() (phyde.HydeData method),

14
test_triple() (phyde.HydeData method), 14

V
violinplot() (in module phyde.visualize.viz), 18

W
write_summary() (phyde.Bootstrap method), 16

21

	Getting help
	Features
	Documentation
	Indices and tables
	Index

